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Abstract Amphiphilic comb-type graft copolymers containing polypropylene (PP)

and polyethylene glycol (PEG) have been prepared. Polypropylene-g-polyethylene

glycol comb-type thermoplastic amphiphilic copolymers were synthesized by the

reaction between chlorinated polypropylene and polyethylene glycol in the presence

of a base via a ‘‘grafting to’’ technique. A series of graft copolymers containing PEGs

with molecular weights of 600 and 2,000 Da in the range of 4–34 mol% PEG were

obtained. The amphiphilic graft copolymers with PEG segments in range between 20

and 30 mol% PEG displayed good film properties with elongation at break 275–

440%. The hydrophilicity of the amphiphilic copolymers increases with the increasing

PEG content in the copolymer while the mechanical properties decrease. Therefore,

PP-g-PEG2000 with PEG contents in the range of 20–30 mol% PEG should be useful

for medical and industrial applications where good film properties are needed.

Keywords Amphiphilic polymer � Comb-type graft copolymer �
Polypropylene � Polyethylene glycol

Introduction

Amphiphilic block copolymers containing hydrophobic and hydrophilic blocks are a

class of functional polymers for application in the structural control of materials
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interfaces [1–10]. Their ability to form micelles in water [11–16] also makes

amphiphilic block copolymers strong candidates for potential applications as

emulsifiers, dispersants, foamers, thickeners, rinse aids, and compatibilizers

[17–20].

The last two decades have seen considerable progress in the development of

synthetic strategies to prepare amphiphilic block copolymers of various architec-

tures, solubility, and functionality. Architectures comprise diblock, triblock, and

multiblock copolymers [21–33] arranged linearly or a star [13, 34–37], dendritic

[38–41], hexagram [42], comb- or brush-type [23, 35, 42–52] copolymers. Grafting

reactions of the hydrophilic segments with a hydrophobic chain can be performed in

three routes [35, 43–46]: ‘‘grafting from,’’ ‘‘grafting through,’’ and ‘‘grafting onto’’

leading to comb- or brush-type graft copolymers [23, 42, 47–52]. Brush-type graft

copolymers usually consist of a linear backbone with a high grafting density of side

chains (usually one side chain per repeat unit of the backbone). Comb-type graft

polymers consist of a main polymer chain, the backbone with one or more side

chains attached to it through covalent bonds, and the branches [23, 42, 47–52]. The

backbone length, grafting density, and side chain lengths determine the total molar

mass and influence the properties of comb-type graft copolymers.

In the ‘‘grafting onto’’ method the backbone and the arms are prepared separately

by a living polymerization mechanism. The backbone bears functional groups

distributed along the chain that can react with the living branches. Upon mixing the

backbone and the branches in the desired proportion and under the appropriate

experimental conditions, a coupling reaction takes place resulting in the final comb

shaped polymers. Comb-type graft copolymers contain polymer groups which are

suspensed along main chain therefore it causes a very tight structure and a higher

density segment to form. Block copolymers having a poly(ethylene glycol) (PEG)

comprise a special and interesting category since PEG is a crystalline, neutral,

nontoxic, and biocompatible material [10, 45, 47, 50, 53–63].

In spite of the promising results achieved up to now, the synthesis of novel

polymers and copolymers is still of importance due to the high demand for new

materials with defined architectures and improved properties. Up to now, most

amphiphilic polymers were comprised from PEG and vinyl polymers as hydropho-

bic segment such as polyethylene, polystyrene, and polymethyl methacrylate.

Polypropylene (PP) is one of the most important polyolefines due to its wide

industrial production, low cost, good mechanical properties, easy processing, and

excellent recyclability [64, 65]. Furthermore, it is a very versatile, hydrophobic

polymer that has medical and industrial applications due to its good film and fiber

properties. In order to obtain materials with advantageous properties, polar groups

can be introduced into this polyolefin to overcome its hydrophobic character via free

radical post-polymerization reactions. There have been post-polymerization reac-

tions such as peroxide [66], maleic anhydride [67], and acrylate [68] modifications.

Hydroxyl [69] and ester [70] functionalized PP have also been prepared by metal-

based catalysts to convert terminal C–H bonds into hydroxyl groups.

The synthesis and structural characterization of polyvinyl chloride-g-PEG

amphiphilic graft copolymers by using PEG200 and PEG600 have been

reported without thermal and mechanical characterization [71]. To our knowledge,
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PP-g-PEG amphiphilic polymers have not been synthesized up to now. We recently

reported that the antimicrobial efficiency of gold and silver nanoparticles embedded

into PP-g-PEG amphiphilic comb-type graft copolymers [72]. The present work is

an extension of our recent work [72] and refers to the synthesis and thermal and

mechanical characterization of a series of the amphiphilic comb-type PP-g-PEG

graft copolymers by using PEG600 and PEG2000.

Experimental

Materials

Chlorinated polypropylene (PP-Cl) has one chlorine atom in average in three

repeating units with MW 147 Da and supplied from Aldrich. NaH 60 wt% in oil,

polyethylene glycols with MW 600 Da (PEG-600) and MW 2,000 Da (PEG-2000),

were supplied from Aldrich. THF was supplied from Aldrich and refluxed on

sodium flakes overnight and then distilled. The middle fraction was used.

Synthesis of PP-g-PEG amphiphilic graft copolymers

Experimental procedure

The williamson-ether-synthesis-like reaction between PEG and PP-Cl was per-

formed according to previously reported methods [73]. The synthesis was based on

the reaction between chlorine in PP-Cl and the sodium salt of PEG. A typical end-

capping reaction was performed as follows: PEG-600 (1.51 g, 2.5 mmol) and PP-Cl

(1.43 g, 1.0 mmol Cl) were mixed and dissolved in dry THF (10 mL). To the

solution was added NaH (0.12 g, 5 mmol), and the reaction mixture was stirred at

room temperature under argon for 3 days. The reaction mixture was poured into

200 mL water containing 1 mL of concentrated HCl. The polymer was filtered,

washed with distilled water and dried under vacuum at 50 �C overnight. For the

purification, it was redissolved in chloroform and reprecipitated in 200 mL of

methanol and then dried under vacuum overnight. Yield: 1.9 g (75 wt%).

Instrumentation

FT-IR and FTIR-ATR (Attenuated Total Reflectance Spectroscopy) spectra were

recorded using a Nicolet 520 model FT-IR Fourier Transform Infrared Spectrometer

and Perkin Elmer FT-IR Spectrometer 100. 1H-NMR spectra of the samples in

CDCl3 as solvent and tetra methylsilane as the internal standard was recorded using

Bruker mq 20 Minispec model Pulsed NMR Spectrometer. The molecular weight of

the polymeric samples were determined by gel permeation chromatography (GPC)

measurements in tetrahydrofuran (THF) with an Agilent 1100 Series GPC Setup as

an integrated instrument, including a Zorbax PSM 60 S column (range: 5 9 102–

104 MW), Zorbax PSM 1000 S (range: 104–106 MW), a UV (254 nm), and RI

detector. The eluent was run at 40 �C and at a flow rate of 1 mL/min. A calibration
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curve was generated with four polystyrene green standards provided by EasyCal

Agilent Technologies Polymer Standards Service (MW’s: 696500, 50400, and

2960). The thermal behavior of the samples was investigated using a DuPont 951

thermogravimetric analyzer. Viscosity measurements were carried out by using

Brookfield Cone and Plate Viscosimeter.

Stress–strain measurements of the polymer samples were performed on a Zwick

Z010 Model Universal Tensile Testing Machine using a 50 kg load cell with a

stretch speed of 100 mm/min. The film samples were rectangularly shaped with a

size of (0.3–0.4) 9 10 9 50 mm. At least four samples were used in the

measurement for each experiment.

Measurement of swelling ratio

The degree of swelling of the amphiphilic polymer was measured gravimetrically in

distilled water at room temperature. Before the measurement of the swelling ratio,

the amphiphilic polymer was incubated in distilled water for at least 24 h at each

particular temperature, and weighed after blotting the excess surface water. Degree

of swelling was defined as follows [74]:

Swelling ð%Þ ¼ 100� ðWs �WdÞ=Wd;

where Ws is the weight of swollen amphiphilic polymer at a particular temperature

and Wd is the dry weight of amphiphilic polymer after drying under vacuum

overnight.

Chlorine analysis

The amount of chlorine in the amphiphilic polymer was determined using a

gravimetric method. In a pyrex tube, a piece of polymer sample (30 mg) and a piece

of sodium (0.1 g) were fused together on a flame. After cooling at room

temperature, the product was dissolved in 20 mL of water and then acidified with

3 mL of the concentrated HNO3. The solution was filtered from carbonized residue.

2 mL 10 M AgNO3 was used to precipitate AgCl. The amount of chlorine in the

amphiphilic polymer was calculated by using dry weight of AgCl.

Determination of the PEG content of the amphiphilic polymer by FT-IR

spectroscopy

PEG contents of the amphiphilic polymers were calculated by using the FT-IR

spectra of the amphiphilic copolymers according to a previously reported [32]. FT-

IR spectra of the polymers were recorded from their KBr pellets (150 mg

KBr ? 2 mg sample). The length of the signal at 1,100 cm-1 which belong to the

ether bonds of PEG was compared with the calibration curve obtained from that of

PEG in a mixture with PP-Cl.
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Results and discussion

Synthesis of PP-g-PEG

Grafting of PEG chains onto chlorinated-PP using a Williamson-ether-synthesis-like

reaction was performed. While this reaction was widely used for making

macromolecules (i.e., the convergent synthesis of Frechet-type dendrimers relies

on this reaction) [73, 75, 76] it has not been used for grafting PEG chains onto

chlorinated-PP. PP is an attractive material for PEG grafting to produce amphiphilic

graft copolymers with good film properties. Two new series of the amphiphilic

comb-type PP-g-PEG graft copolymers based on chlorinated PP (PP-Cl) and PEG

(MW 600 and 2,000) were synthesized. Scheme 1 shows the reaction between the

hydroxyl endgroups of the PEG and the chloride substituents of the PP-Cl in the

presence of a base. The end-capping reaction was used to successfully synthesize

amphiphilic graft copolymers. PEG units inserted along the PP backbone produce a

comb-type graft copolymer structure. The incorporation of hydrophilic units

increased the polymer hydrophilicity due to the strong interaction between water

and the PEG in the polymer. Figure 1 shows typical 1H-NMR spectra of the PEG-g-

PP block copolymers with their characteristic sharp signal of PEG segments at

3.6 ppm. The other characteristic signals at 0.9–2.1 ppm for PP units and at 3.5–

4.0 ppm for –CH2–Cl groups for the precursor PP-Cl and for –CH2–Cl residues in

the graft copolymers. Figure 2 shows the FT-IR spectra of the precursor PP-Cl, PP-

g-PEG600, and PP-g-PEG2000 graft copolymer samples. The characteristic signals

at 1,100 cm-1 for PEG and 657, 725, 757 cm-1 for –CH2–Cl residues in the FT-IR

spectra of the graft copolymers were observed. Since the signals of –CH2–Cl groups

(at 3.5–4.0 ppm) partially overlaps with the PEG signal in 1H-NMR, we have used

the FT-IR spectra of the graft copolymers to determine PEG content of the graft

copolymers. The reaction conditions, PEG content, chlorine (Cl) content, and

swelling ratios of the amphiphilic graft copolymers are given in Table 1. The PEG

Scheme 1 A typical reaction design on the synthesis of PP-g-PEG graft copolymers
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contents of the graft copolymer series were varied between 6 and 25 wt%.

Increasing the PEG content causes increasing swelling degrees in water as expected.

The highest swelling degrees were observed at 91% for PPEG2000-4 containing

25 wt% of PEG2000 and 71% for PPEG600-4 containing 25 wt% of PEG600 when

the hydrophilic unit (PEG) in the gel was the highest. One can conclude that the

Fig. 1 1H-NMR spectra of the
PP-Cl, PP-g-PEG600, and
PP-g-PEG2000 graft copolymers

696 Polym. Bull. (2010) 64:691–705

123



hydrophilic character of the PEG units increases with the increasing molecular

weight of PEG. Due to the overlapping PEG and –CH2–Cl signals in their 1H-NMR

spectra, chlorine content of the graft copolymer was determined gravimetrically.

The variation of PEG content with swelling degree and chlorine content in graft

copolymer have been plotted in Fig. 3. The Cl content of the graft copolymers were

found to be in range between 9 and 30 wt%, corresponding to the attached PEG

units.

TGA is used for the evaluation of the thermal stability of polymers. The shapes

of the all weight-loss curves of all the amphiphilic graft copolymer samples

were almost identical. Figure 4 shows the TGA curves of the PP-g-PEG600 and

Fig. 2 FT-IR spectra of the precursor PP-Cl, PP-g-PEG600, and PP-g-PEG2000 graft copolymer
samples
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PP-g-PEG2000. Two decomposition steps for the PP-g-PEG600 series were

observed at 253–333 and 477–482 �C, which can be attributed to the PEG segment

and PP segment, respectively. Alternatively, one can argue that there is the apparent

observation of a single thermal transition for the PPEG2000 at 391–471 �C. The

TGA results of the graft copolymers were also listed in Table 2.

The stress–strain curves for the PP-g-PEG amphiphilic graft copolymer plastic

sheets are shown in Fig. 5. The stress at break and elongation at break of the

copolymer samples are also listed in Table 1. In the case of PP-g-PEG600 series,

the graft copolymer having the highest PEG600 segment had the highest stress

Table 1 Reaction conditions, polymer analysis, and mechanical properties of PP, PPCl, and PP-g-PEG

graft copolymers

Sample End-capping reaction PP-g-PEG graft copolymer

PP-Cl PEG2000 PEG600 NaH PEG –Cl Stress Elongation

(mol, Cl) (mol) (mol) (mol) (wt%) (wt%) (MPa) (%)

PP 1.00 – – – – – 26 680

PPCl 1.00 – – – – 34 18 350

PPEG600-1 1.00 0.30 – 0.30 10 25 36 380

PPEG600-2 1.00 0.33 – 0.33 16 22 13 355

PPEG600-3 1.00 0.50 – 0.50 20 20 13 440

PPEG600-4 1.00 0.67 – 0.67 25 19 3.3 275

PPEG2000-1 1.00 – 0.24 0.30 15 30 22 670

PPEG2000-2 1.00 – 0.50 0.60 20 22 12 424

PPEG2000-3 1.00 – 0.75 0.80 22 20 2.2 128

PPEG2000-4 1.00 – 1.00 1.20 24 19 1.0 56

Fig. 3 The plot of the swelling degree and the chlorine content versus the PEG600 content and PEG2000
content (PEG600: square, triangle, PEG2000: filled square, filled triangle)
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(ca. 36 MPa) and elongation at break 380%. The other samples of the series

displayed stress at break in range between 3.3 and 13 MPa and elongation at break

in range between 275 and 440%. Interestingly, in the case of PP-g-PEG2000 series,

the PEG content in copolymer was inversely proportional to the stress–strain values.

For medical and industrial applications, PP-g-PEG2000 amphiphilic copolymers

with PEG contents in range from 20 to 30% should be prepared when amphiphilic

copolymers with good film properties are needed. Figure 6 shows the smooth

decrease in mechanical properties by the increase in the PEG content in the

amphiphilic graft copolymer.

Fig. 4 TGA curves of the PP-g-PEG600 and PP-g-PEG2000 series
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Table 2 Thermal properties of

the PP-g-PEG graft copolymers

obtained from TGA analysis

Sample TGA (�C)

Td1 Td1
0 Td2

PP – 481

PPEG600-1 333 – 477

PPEG600-2 298 – 482

PPEG600-3 253 – 487

PPEG600-4 300 – 477

PPEG2000-1 397 476

PPEG2000-2 – 461

PPEG2000-3 430 456

PPEG2000-4 391 470

Fig. 5 Stress–strain curves of the precursors PP (a) and PP-Cl (b); and PPEG600 and PPEG2000 graft
copolymer series: (c) PPEG2000-1, (d) PPEG2000-2, (e) PPEG2000-3, (f) PPEG600-1, (g) PPEG600-2,
and (h) PPEG600-3
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Surface properties of the graft copolymers

The solution properties of the graft polymer differ greatly from the parent backbone

polymer, providing further evidence of the formation of the grafted structures. We

have also observed that the behavior of a water drop on the PP-g-PEG film surfaces.

Figure 7 shows the photographs of the water drops on the amphiphilic polymer films

and the hydrophobic templates. The hydrophilic PEG segments of the amphiphiles

strongly interacts with water drops on the polymer surface and the water drop

expands on the surface while water drops on the hydrophobic surfaces of PP and

PP-Cl do not expand.

Fig. 6 Dependence of the
mechanical properties of the
PP-g-PEG2000 amphiphilic
graft copolymers on the PEG
content

Fig. 7 Photographs of the water drop on the PP, PP-Cl, PPEG2000-2, and PPEG600-4 film surfaces after
1 min
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Conclusion

New PP-g-PEG comb-type copolymers containing PEG side-chains with molecular

weights of 600 and 2,000 Da were synthesized, which are promising materials for

medical and industrial applications. The hydrophilicity of the amphiphilic

copolymers increases by the increasing PEG content in the copolymer while

mechanical properties decrease with increased PEG content. Therefore, PP-g-

PEG2000 with PEG contents in range between 10 and 25 wt% should be useful for

medical and industrial application when good films with hydrophilic properties are

needed.
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